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ABSTRACT: Accurate modeling of large rubber deformations is now possible with finite-
element codes. Many of these codes have certain strain-energy functions built-in, but it
can be difficult to get the relevant material parameters and the behavior of the different
built-in functions have not been seriously evaluated. In this article, we show the
benefits of assuming a Valanis–Landel (VL) form for the strain-energy function and
demonstrate how this function can be used to enlarge the data set available to fit a
polynomial expansion of the strain-energy function. Specifically, we show that in the
ABAQUS finite-element code the Ogden strain-energy density function, which is a
special form of the VL function, can be used to provide a planar stress–strain data set
even though the underlying data used to determine the constants in the strain-energy
function include only uniaxial data. Importantly, the polynomial strain-energy density
function, when fit to the uniaxial data set alone, does not give the same planar
stress–strain behavior as that predicted from the VL or Ogden models. However, the
polynomial form does give the same planar response when the VL-generated planar
data are added to the uniaxial data set and fit with the polynomial strain-energy
function. This shows how the VL function can provide a reasonable means of estimating
the three-dimensional strain-energy density function when only uniaxial data are
available. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 837–848, 2001
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INTRODUCTION

Elastomeric bearings used for earthquake load
isolation consist of alternating layers of steel and
rubber—the latter vulcanized under high temper-

ature—to form a composite bearing. Under axial
loading, the rubber in the bearing expands out-
ward. This deformation leads to the rupture of
steel in the radial direction or debonding between
steel and rubber. In prior work, the load-deflec-
tion response of such a bearing was modeled us-
ing the ABAQUS1 finite-element code.2 In this
article, we present the methodology used to de-
termine the parameters employed in the consti-
tutive model for the rubber used in that study.

Most finite-element codes today include a hy-
perelastic constitutive model for analysis. In the
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case of the ABAQUS version available at the time
of the current work, the hyperelastic models in-
cluded were a multiterm Rivlin expansion and a
multiterm version of the Ogden model. Both in-
clude the possibility of material compressibility.
A major difficulty in the use of such finite-element
codes is the experimental determination of the
material parameters to use in the model chosen
for calculation. For the polynomial expansion in
the invariants of the deformation tensor, the ex-
perimental data needed include uniaxial, biaxial,
and planar extension (pure shear) tests. Uniaxial
deformations include both tensile and compres-
sive deformations. Yet, it is typical that only uni-
axial tension tests are performed and this may
lead to limited accuracy when attempting to de-
termine the strain-energy density function. In
particular, the exclusion of compression data may
result in a strain-energy density function that
does not capture much of the strain energy’s de-
pendence on I2. For this reason, tests were per-
formed in both tension and compression.

Furthermore, measurements of pure shear or
nonequal biaxial responses to obtain additional
data, which would improve the performance of
the polynomial model in the full range of defor-
mation geometries, requires special mechanical
devices that are expensive to make and not al-
ways practicable to build. In this article, we show
that one possible and practical alternative to per-
forming the pure shear (or other) tests is to use
the Valanis–Landel (VL) function3 to generate
such data from experimental uniaxial tension and
compression data alone. An important point that
is made in the article is that, to the extent that
the VL function is valid, it provides a means to
estimate deformations other than uniaxial ten-
sion and compression that differ from those esti-
mated from the polynomial form of the strain-
energy function when the latter is fitted to the
same set of uniaxial data. The polynomial form,
when fitted to uniaxial tension, uniaxial compres-
sion, and the VL-generated pure shear data, gives
good fits to the entire data set. This result sug-
gests the need to adequately consider more than
just uniaxial data when computing strain-energy
functions for rubber. Finally, in the work here, we
describe the use of a compressible strain-energy
function. The use of such a function is important
in earthquake bearings because the high pres-
sures involved in their loading can lead to as
much as 10% vol change in the rubber.

CONSTITUTIVE MODELING OF RUBBER

General Considerations

Rubber is a nonlinear, nearly elastic material
even at large strains. Such behavior is well char-
acterized by a hyperelastic model. Here, we as-
sume that the rubber is isotropic; hence, the
strain-energy density function can be written as a
function of the strain invariants I1; U 5 (I1, I2, I3),
where I3 is the square of the volume ratio J (J
5 =I3) and is equal to 1 for a perfectly incom-
pressible material. It is common to assume that
rubber materials are incompressible when the
material is not subjected to large hydrostatic
loadings. However, in the case here, large hydro-
static stresses arise in the compressive loading of
the earthquake bearings and we need to consider
both the compressible and the incompressible
problems.

Practically, solid rubber has a Poisson’s ratio
that ranges from 0.49 to 0.50.4 As described sub-
sequently, the Poisson’s ratio for the rubber used
in this study was found by a volumetric compres-
sion test to be 0.4994. Hence, the rubber is nearly
incompressible. If a material is incompressible,
the hydrostatic stress cannot be found from the
displacements, since the application of a hydro-
static stress results in no deformation. “Mixed”
formulations have successfully dealt with this
problem.5,6 In a mixed formulation for a perfectly
incompressible material, the internal energy is
augmented by adding the term p(J 2 1), where p
is a Lagrange multiplier (the hydrostatic stress)
introduced to impose the constraint J 2 1 5 0 (J
2 1 is the volumetric strain). This allows the
hydrostatic stress to be approximated directly,
independent of the displacements. The stress that
is derived from the displacements is the devia-
toric stress. The sum of the hydrostatic and de-
viatoric stress tensors gives the total stress ten-
sor. We note that this is an approximation, as
Penn7 and Fong and Penn8 showed deviations
from such a separability of deviatoric and hydro-
static components in measurements of volume
changes in rubber under large uniaxial deforma-
tions.

Following the development in ABAQUS,1 the
deviatoric portion of the strain energy can be
written using revised invariants that remove any
effect due to volume change. The strain energy is
written as

U 5 U~I#1, I#2, I3! 5 U# ~I#1, I#2! 1 Ũ~I3! (1)
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where the bars over the first two strain invariants
indicate removal of volume changes.

The decoupling of the deviatoric and volumet-
ric strain energy can only be valid if the bulk
modulus is a constant (Sussman and Bathe,9 but
see also Penn7 and Fong and Penn,8 cited above).
A constant bulk modulus implies that the pres-
sure/volume ratio is constant. Results of volumet-
ric testing, discussed later, show that the bulk
modulus is a constant, independent of the applied
uniaxial compressive deformation. On this basis,
the decoupling of the strain energy into deviatoric
and volumetric portions is assumed to be a rea-
sonable approximation for the rubber tested and,
therefore, the use of the mixed approach is justi-
fied.

Two forms of the strain-energy density func-
tion based on the mixed formulation were used.
The first is the polynomial strain energy density
function, in which the strain energy is

U 5 O
i1j51

N

Cij~I#1 2 3!i~I#2 2 3!j 1 O
i51

N 1
Di

~Jel 2 1!2i

(2)

The first summation is the contribution due to
deviatoric effects, and the second summation is
the contribution due to volumetric effects. The Cij
and Di are parameters that are found from the
rubber test data and I#1 and I#2 are the first and
second invariants of the Cauchy–Green deforma-
tion tensor with the volume change removed. Jel
is the ratio of the current volume to the original
volume excluding thermal effects. For N 5 1, the
deviatoric contribution to the strain energy is
called the Mooney–Rivlin function. It is often
written as

U 5 C10~I#1 2 3! 1 C01~I#2 2 3! (3)

In addition to the well-known invariant expan-
sion described above, the strain-energy density
function of an isotropic elastic material can also
be written in terms of the stretches l. Valanis and
Landel3 postulated that the strain-energy density
function is a function that is separable in terms of
the principal stretches, and the total strain en-
ergy is

U 5 u~l1! 1 u~l2! 1 u~l3! (4)

We will refer to u( z ) as the Valanis–Landel or VL
function.

In ABAQUS, a special form of the VL function
for the strain-energy density is provided—it is the
Ogden strain-energy density function, which we
also consider in this study. The contribution due
to deviatoric effects is written as a function of the
stretch ratios. In ABAQUS, a compressible form
of the Ogden function is also provided and the
contribution due to volumetric effects is the same
as that used for the polynomial strain-energy
function:

U 5 O
i51

N 2mi

ai
2 ~l# 1

ai 1 l# 2
ai 1 l# 3

ai 2 3! 1 O
i51

N 1
Di

~Jel 2 1!2i

(5)

In eq. (5), mi, ai, and Di are parameters that are
found from the rubber test data. The principal
stretch ratios l# k

ai have the volume change re-
moved. To determine the deviatoric parameters
Cij in eq. (3) and mi and ai in eq. (5), experimental
data can be fitted to one or more of the three
deformation modes: uniaxial (tension or compres-
sion), equibiaxial (tension or compression), and
planar (tension or compression; this is pure shear
when the material is incompressible).1 We re-
mark further that the Cij and the mi and ai, are
assumed to be independent of the volume.

Using a right-handed Cartesian coordinate
system with axes x1, x2, and x3, let the uniaxial
deformation mode correspond to an application of
force along the longitudinal axis of the specimen.
For the purpose of explanation here, we denote
this axis x1. Then, the specimen is free to expand
or contract along axes x2 and x3. The equibiaxial
deformation mode corresponds to equal stretches
along the x1 and x2 axes, with unrestrained move-
ment along the x3 axis. Planar deformation corre-
sponds to a stretch along the x1 axis, with no
stretch allowed along the x2 axis, and unre-
strained movement along the x3 axis. Each of
these modes is an example of a deformation in
which the directions of principal strain do not
change, that is, the deformations take place along
the principal axes. Each mode can be written in
terms of a single stretch, which allows the stress–
strain relationship to be easily measured. To de-
termine the isotropic (or hydrostatic) parameters
in Di in eqs. (2) and (4), constrained compression
tests in which volume change could be measured
were performed.
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For an incompressible material, uniaxial com-
pression is equivalent to equibiaxial tension, uni-
axial tension is equivalent to equibiaxial com-
pression, and planar tension is equivalent to pla-
nar compression. For the material analysis
performed here, experimental testing was per-
formed in uniaxial tension and uniaxial compres-
sion. A planar test could have been done had the
appropriate equipment been available and may
have captured dependence on the strain invari-
ants that was missed by the uniaxial tests. Un-
fortunately, this experiment requires more exten-
sive preparation and tooling than was available
in our laboratories. In lieu of an actual planar
test, the stress–strain response in planar tension
was calculated using the VL function, which has
been shown to be an excellent descriptor of actual
rubber behavior.10–13

Determination of the VL Strain-energy Function

As noted above, apart from the constrained com-
pression, the mechanical testing of the rubber
was performed only in the uniaxial tensile and
compressive modes. The planar deformation
mode is independent of either of the uniaxial ten-
sion or uniaxial compression modes. No planar
deformation tests were done, since a test appara-
tus for this mode of deformation was neither
available nor practicable to build for small speci-
mens. Planar deformation is also referred to as a
pure shear or strip biaxial deformation. It is dif-
ferent from simple shear deformation in that the
principal strain directions remain unchanged
during the deformation. Because of the lack of
test data and the known success of the VL func-
tion in describing the behavior of rubber (see ref-
erences cited above), we used the VL function to
generate stress data for planar deformation as if
the tests had been performed.

Kearsley and Zapas13 showed how to obtain the
VL function from uniaxial tensile and compres-
sive data, which we did obtain. In terms of the
true stress t and the stretch l, the following re-
cursive expression can be used to obtain the de-
rivative u9(l) of the VL function:

lim
n3`

O
k50

n21

@t~l~1/4!k
! 1 t~l2~1/2!~1/4!k

!# 5 lu9~l! (6)

The right-hand side of eq. (6) is an infinite sum of
the true stresses at the stretches specified in the
bracketed expression. The rapid convergence of
this infinite series allows one to obtain the VL

function with a small number of terms. Note that
the first and second terms are on opposite sides of
the undeformed state (l 5 1), so that both exten-
sion and compression data are required, and the
terms of the series converge rapidly from both
sides of the undeformed state. A computer pro-
gram was written to find the values m9(l) at the
desired stretch values. The formula for uniaxial
engineering stresses, written in terms of the de-
rivative of the VL function, is

s 5 u9~l! 2 l23/2u9~l21/2! (7)

EXPERIMENTAL

Materials

The material used in this study was a carbon
black-reinforced rubber compound of the same
composition as that used in the manufacture of
the elastomeric bearings. It was provided in the
form of sheets provided by the bearing manufac-
turer and prepared according to ASTM D3182-
89.14 Nominal rubber mechanical properties pro-
vided by the manufacturer are presented in Ta-
ble I.

Mechanical Testing Procedures

All rubber testing was performed on an Instron
1125 test machine. The accuracy of this machine
was established through a calibration test using
known dead loads and was calibrated according to
ASTM E4, which requires that the machine read-
ing be within 1% of the true reading. The machine
met these requirements. This is equivalent to a
relative expanded uncertainty (k 5 2) of 1% and is
small compared to specimen variability for the
rubber uniaxial testing.

The uniaxial tension tests were performed up
to engineering tensile strains of 6.00, very near
the ultimate elongation of the rubber, to ensure
that the strain-energy density function would ad-
equately represent the severe engineering tensile
stresses and strains expected in the finite-ele-
ment analysis of the elastomeric bearings. The
testing was performed on 14 dumbbell specimens.
The variation about the mean of these tests was
approximately 610%, so the variability can be
attributed to factors outside the resolution of the
testing machine. Sources of variation include (1)
differences in the properties of the rubber and (2)
measurement error. Displacements were re-
corded manually using a hand-held caliper, and
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force readings were manually taken at the time of
each displacement reading. Measurement error
in the cross-sectional area can also affect the re-
sults. Based on this limited testing sample and
manual testing methodology, it is difficult to say
how much of the variability is due strictly to dif-
ferences in the properties of the rubber, but it is
likely that the largest portion of the variability is
due to the manual measurement process. Testing
of the rubber was performed at strain rates rang-
ing from 5 3 1024 to 4.4 3 1022 s21. There was no
trend of the data with the strain rate and the test
results reported here are for the strain rate of 5
3 1024 s21 (see Bradley2).

The uniaxial compressive tests were carried to
a stress level exceeding 100 MPa. At this stress
level, the engineering compressive strain ex-
ceeded 0.85. To get accurate displacement read-
ings for the compression test, machine compli-
ance was removed from the displacement data.
The uniaxial compression test was made to sim-
ulate homogeneous compression, in which
straight lines before deformation remain straight
after deformation. This test requires the loaded
ends of the specimen to slide freely along the
loaded surface, so there is no bowing of the un-
loaded surface. Attaining perfect homogeneous
compression requires a frictionless contact be-
tween the platen and the sample surface. This
condition was approximated by applying a lubri-
cant to the specimen’s plane faces.

Whether or not bowing of the unloaded sur-
faces occurred was very difficult to determine vi-
sually because the loaded specimens became very
thin and the lubricant squeezing out from the
edges of the loaded surfaces obscured the view.
After unloading, the circle of lubricant on the
platen showed that the loaded surface had slipped
considerably. To assure ourselves that, in fact,
the specimens were not bowing very much, we
tested two specimens in compression, one with a
shape factor of 0.55 and the other with a shape
factor of 1.10. The shape factor, S, is a measure of

the relative thickness of a specimen. It is defined
as the ratio of the area of one loaded surface to the
area of the unloaded surface. For cylindrical spec-
imens, S 5 r/2T, where r is the radius and t is the
thickness of the specimen. The responses were
nearly identical after removal of the machine
compliance. Since the stress–strain response is a
strong function of the shape factor for bonded
specimens16,17 and is independent of shape factor
for homogeneous compression, this result gives us
confidence that the compression test was a fairly
good representation of homogeneous compres-
sion. For the two compression tests done, the vari-
ation of the test values about the mean of the two
tests was approximately 62.8%.

Three volumetric tests were performed, each
using a cylindrical compression-set rubber speci-
men, using a device manufactured for this exper-
iment. It consists of two steel plates joined to-
gether by cap screws, with a hole cut into the
upper plate. The diameter of the hole is 1.100 in.,
with tolerances of 20.000 and 10.001 in. A pis-
ton, to which compressive load was applied, was
cut to a diameter of 1.100 in. with tolerances of
10.000 and 20.001 in. The tight tolerances were
necessary because of the extreme importance of
providing no room for the rubber to extrude dur-
ing the test. The piston slid freely through the
hole when the bottom plate was removed, but
with the bottom plate attached, entrapped air
retarded its movement considerably, showing
that the device and sample diameters are identi-
cal. After removal of the machine compliance, the
raw data were converted into a pressure and vol-
ume ratio.

RESULTS

Figure 1 depicts the experimentally determined
uniaxial tensile and compressive stress–strain
data (crosses). These data were used to determine
the deviatoric constants in the strain-energy den-

Table I Nominal Mechanical Properties of the Rubber Supplied by the Elastomeric Bearing
Manufacturer and Tested for This Study

Material

Shear Modulus
[ASTM D-4014-89,

Annex A1] MPa
(psi)

Tensile Strength
[ASTM D-412-92,
Method A] MPa

(psi)

Ultimate Elongation
[ASTM D-412-92,

Method A] (%)

Compression Set
[ASTM D-395-

89, Method B15]
(%)

Manufacturer supplied
composite batch 0.883 (128) 16.59 (2406) 621 20.75
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sity functions and to determine the VL function
(solid line), both of which were used in the finite-
element modeling [see eqs. (2), (4), (5), and (7)].
Figure 2 shows the results of the constrained
compression test. These data confirm the con-
stancy of the bulk modulus and justify the ap-
proximation involved in decomposing the strain-
energy density function into a deviatoric and a
hydrostatic component [see eqs. (1), (2), and (4)].
Additionally, these data were used to determine
the hydrostatic (or volumetric) constants in the
strain-energy density functions, which were then

used in the finite-element modeling. For the three
volumetric tests, the slopes of each graph, which
correspond to the bulk modulus, differ by only
60.86% from the mean value. This difference can-
not be attributed to any specific errors in testing
or differences in the bulk modulus from sample to
sample because they are within the resolution of
the testing machine.

The data of Figures 1 and 2 permit the deter-
mination of the compressible VL function param-
eters. The solid line in Figure 1 is the VL function
fit to the uniaxial tension and compression data
[crosses in Fig. 1; also see eq. (7)]. Clearly, the VL
function provides an excellent fit to the uniaxial
stress–strain data.

As another check on the stresses generated by
the VL function, we compare equibiaxial stresses
generated in two different ways, as follows: First,
uniaxial compression and equibiaxial tension
are equivalent for an incompressible material.
Through a simple transformation, one can show
that the equibiaxial stress–strain, written as a
function of uniaxial compression and the stretch,
is

sequibiaxial 5 2scompressivel
3/2 (8)

and, second, in terms of the VL function, the
equibiaxial stress–strain relationship can be ex-
pressed as follows:

sequibiaxial 5 u9~l! 2
1
l3 u9S 1

l2D (9)

Figure 1 Plot of the uniaxial stress–strain behavior
of the filled rubber: (3) experimental data; (solid line)
VL fit to the data.

Figure 2 Comparison of volumetric compression test
results and finite-element results for filled rubber.

Figure 3 Comparison of the equibiaxial stress–strain
behavior of the filled rubber determined from eqs. (8)
and (9).
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Figure 3 shows excellent agreement between the
equibiaxial stresses calculated from eqs. (8) and (9).

In terms of the VL function, the planar stress–
strain relationship can be expressed as follows:

splanar 5 u9~l! 2
1
l2 u9S1

lD (10)

Figure 4 is a comparison between the planar ten-
sile (pure shear) stresses calculated from the VL
function and the experimental uniaxial tensile
stresses. Note that the planar stresses are
slightly larger than are the uniaxial stresses at a
given level of strain. The relative values are con-
sistent with experimental data reported by Tre-
loar.18 This result is expected since the force re-
quired to deform a specimen in planar tension
should be at least as large as is the force required
in uniaxial tension because additional constraints
are imposed on the specimen along the axis per-
pendicular to the direction of loading.

As noted above, the uniaxial engineering
stress–strain data points were used to obtain the
deviatoric constants for the rubber model. When
only these experimental data points are used to
find the constants in the polynomial and Ogden
strain-energy density functions [see eqs. (2) and
(5)], the model is referred to as experimental axial
data (EAD). Additionally, a second data set was

generated to determine the deviatoric constants
and included the planar tension data calculated
from the VL function and the uniaxial engineer-
ing stress–strain data points. We refer to this
model as generated planar data (GPD). The hy-
drostatic portion of the polynomial and Ogden
models remains the same, and the constants were
found from the experimental pressure–volume
data shown in Figure 2.

COMPARISON OF THE RUBBER MODELS
IN ABAQUS

One way to verify if the generated planar tension
data improve the computer model is to compare
the finite-element results of the GPD and EAD
models. This comparison was performed for four
modes of deformation: uniaxial tension, uniaxial
compression, equibiaxial tension, and planar ten-
sion.

First, we determine the number of terms
needed to approximate the strain-energy density
function. It is helpful to look at the reduced
stress19,20:

tR 5
t

Sl2 2
1
lD

5 2SU
I1

1
1
l

U
I2

D (11)

Figure 5 Comparison of the reduced stress as calcu-
lated from the different rubber models with that deter-
mined from the experimental data.

Figure 4 Comparison of the planar tensile stress–
strain response calculated from the VL function for the
rubber with the measured uniaxial tensile stress–
strain response.
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The reduced stress provides a sensitive measure
of the deviations of the elastic properties from
constant values.18,20 By plotting 1/l as the ab-
scissa, the compression domain is the region
greater than 1 and the tension domain is com-
pressed between 0 and 1.

The polynomial strain-energy density function
is shown in eq. (2). For N 5 1, we get the Mooney–
Rivlin model [see eq. (3)]. Taking the appropriate
derivatives of eq. (3) and inserting them into eq.
(11), the reduced stress–strain relation for uniax-
ial tension and compression is

tR 5 2C10 1
1
l

2C01 (12)

Equation (12) shows that the Mooney–Rivlin
model results in the reduced stress being linear in
1/l. Figure 5 shows the experimental uniaxial
tensile and compressive data expressed as re-

duced stresses and plotted versus 1/l. Also shown
are the results from the finite-element analysis.

For our present discussion, we look only at the
experimental data. There are several points to be
noted from the data. First, the behavior is un-
usual in two respects: At small deformations,
there appears to be a large upswing in the re-
duced stress values as l approaches the unde-
formed state. This is sometimes thought to occur
because of experimental uncertainties at smaller
deformations,19 but do seem to be outside of the
experimental errors here. It is possible that the
result is due to the specifics of the unknown rub-
ber compound and filler. We address this point
further, subsequently. The second unusual result
is the concave curvature of the behavior at high
stretches and large compressions (ignoring the
small-strain region). Generally, unfilled rubber
does not exhibit such behavior21 and this may be
due to limited chain extensibility that is exagger-
ated by the presence of the reinforcing filler. The

Figure 6 Comparison of the experimental uniaxial
stress–strain response of the rubber with finite-ele-
ment calculations for different strain-energy functions
determined without using the VL function-generated
data (planar tension).

Figure 7 Comparison of the experimental uniaxial
stress–strain response of the rubber with finite-ele-
ment calculations for different strain-energy functions
determined using the VL function-generated data (pla-
nar tension) (GPD).

Table II Average RMS Error of Calibration Runs for Uniaxial Tension

Rubber Model Ogden (N 5 6) Ogden (N 5 3) Polynomial (N 5 2)

EAD Compressible 0.0195 0.0159 0.0177
GPD Compressible 0.0119 0.0160 0.0195
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origins of the behavior are beyond the scope of the
current work and we do not address this point
further.

The net outcome of the observations, however,
is that it becomes clear that the simplest form of
polynomial expression cannot describe the behav-
ior (i.e., the Mooney–Rivlin representation). For
this reason, we chose to use N 5 2 for the poly-
nomial strain-energy density function. This was
the highest order for this function available in the
version of the finite-element code used and has
seven constants Cij.

For the Ogden strain-energy density function,
determination of the order needed (N 5 1, . . . ,6)
to capture the nonlinearity in the experimental
data is not as easy to see because the function is
written in terms of the stretches. In this case, the
derivative with respect to the strain invariants is
not readily evaluated. We believe that using more
terms should help capture the nonlinearity in the
reduced stress versus the stretch curve. We used
N 5 6, which is the largest number of terms
available in the finite-element code used. We also
used N 5 3 for comparison.

To compare the finite-element results against
the experimental and calculated data for the
three models, we calculated the average root-
mean-square (rms) error. The average rms error
is calculated from the formula shown in eq. (13)
and measures the relative error in stress:

avg rms error 5
1
M ÎO

i51

N Ssexp 2 sFE

sexp
D (13)

M is the number of points at which the stress was
calculated by the finite-element analysis; sFE, the
stress calculated by the finite-element analysis;

and sexp, the stress obtained from the experimen-
tal data.

Table II shows the average rms error for each
of the calibration runs for uniaxial tension. The
performance of each model is good, with slightly
better results from the model based on GPD. Fig-
ures 6 and 7 are plots of the finite-element results
versus the experimental uniaxial data (tension
and compression). This plot graphically depicts
the closeness of the finite-element approxima-
tions to the tensile data, using both experimental
data and data generated by the VL function.

Table III shows the average rms error for each
of the calibration runs for uniaxial compression.
Each finite-element result provides a good ap-
proximation to the experimental compression
data, with EAD being slightly better. Also, note
that the Ogden model with six terms (N 5 6)
results in the lowest average rms error for each
rubber model. In Figures 6 and 7, the compres-
sion data corresponds to strains less than zero.

Table IV shows the average rms error for each
of the calibration runs for equibiaxial tension,
and Figures 8 and 9 show plots of each run. The
comparisons are between the data generated by
the VL function and the ABAQUS results using
the two rubber models. The results for each rub-
ber model are comparable, but the experimental
rubber model EAD does a slightly better job than
does GPD when using the Ogden, N 5 6, and the
polynomial, N 5 2, strain-energy density func-
tions, with the Ogden, N 5 6, strain-energy den-
sity function providing the best fit to the equibi-
axial data generated by the VL function. It is
important to note that rubber models EAD and
GPD do not include the equibiaxial data set, yet
the finite-element models closely approximate the
equibiaxial deformation mode.

Table III Average RMS Error of Calibration Runs for Uniaxial Compression

Rubber Model Ogden (N 5 6) Ogden (N 5 3) Polynomial (N 5 2)

EAD Compressible 0.0280 0.0446 0.0476
GPD Compressible 0.0305 0.0451 0.0508

Table IV Average RMS Error of Calibration Runs for Equibiaxial Tension

Rubber Model Ogden (N 5 6) Ogden (N 5 3) Polynomial (N 5 2)

EAD Compressible 0.0117 0.0271 0.0226
GPD Compressible 0.0135 0.0273 0.0389
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Table V shows the average rms error for each of
the calibration runs for planar tension, and Fig-
ures 10 and 11 show plots of each run. An impor-
tant observation is that the Ogden strain-energy
function, using the rubber model EAD (which
does not include the planar data), does a much
better job of fitting the planar data than does the
polynomial strain-energy function. This is proba-
bly because the Ogden model is a special form of
the VL function. A second observation is that
when these calculated data are included in the
data set used to determine the strain-energy den-
sity function (GPD) the polynomial strain-energy
density function performs nearly as well as does
the Ogden function.

As mentioned previously, the volumetric test
runs were only performed using the compressibil-
ity data for rubber models EAD and GPD. Using
an incompressible model would result in no defor-
mation, since the rubber is perfectly confined.
Figure 2 presents the finite-element results com-

pared to the experimental data. The finite-ele-
ment program accurately reproduces the experi-
mental data.

Returning now to Figure 5 and the plot of the
reduced stress versus for the EAD rubber model,
the experimental data exhibit a rapid increase in
the modulus as the unstrained state is ap-
proached. The results using the GPD data are
identical. This was observed by McKenna and
Zapas19,22 and other authors. The finite-element
results using the polynomial or Ogden forms of
the strain-energy function do not capture this
change in reduced stress. McKenna and Zapas22

also noted that the VL function did not capture
this behavior at small strains. McKenna and Za-
pas19 reported that the compression modulus is
greater than is the tension modulus near the un-
deformed state. This observation agrees with our
experimental data. The reasons for this phenom-
enon are not clear. It is interesting to note that
McKenna and Zapas19,22 used bonded cylinders.

Figure 9 Comparison of the experimental equibiaxial
stress–strain response of the rubber with finite-ele-
ment calculations for different strain-energy functions
determined using the VL function-generated data (pla-
nar tension).

Figure 8 Comparison of the experimental equibiaxial
stress–strain response of the rubber with finite-ele-
ment calculations for different strain-energy functions
determined without using the VL function-generated
data (planar tension).

Table V Average RMS Error of Calibration Runs for Planar Tension

Rubber Model Ogden (N 5 6) Ogden (N 5 3) Polynomial (N 5 2)

EAD Compressible 0.0182 0.0147 0.0954
GPD Compressible 0.0100 0.0123 0.0243
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They corrected the results to homogeneous com-
pression using factors determined in a finite-dif-
ference analysis and conjectured that this phe-
nomenon might be due to their experimental ap-
proach. However, in the current experiments, the
tests were carried out on unbonded cylinders that
had been lubricated to reduce friction along the
loaded surfaces.

CONCLUSIONS

The strain-energy density function for an elas-
tomeric material that is used in rubber bearings
for earthquake isolation of buildings was deter-
mined in order that the load-deformation re-
sponse of the bearing could be calculated from
the hyperelastic models in the ABAQUS1 finite-
element program. Because only uniaxial testing
could be performed, we used the VL function to
extend the experimental rubber stress–strain
data into the planar tensile (pure shear) mode.
The polynomial and Ogden forms of the strain-
energy function that were available in ABAQUS
were then fitted to the tension and compression
data and the VL expanded data set that in-
cludes planar tension. Using only uniaxial data
to determine the elastic constants, the Ogden

strain-energy density function, which is a spe-
cial case of the VL function, was able to predict
the full and expanded data set. The polynomial
strain-energy density function with second-or-
der terms (N 5 2, corresponding to seven terms)
significantly overestimates the planar tensile
stresses calculated from the VL or Ogden func-
tions. This suggests that the polynomial strain-
energy density function has a different sensitiv-
ity to the test geometries used for the data input
than does the VL function (or the Ogden func-
tion).

It should be noted that most work in rubber
using the VL function and Mooney–Rivlin plots
was done with unfilled rubber. However, the
rubber used in this testing program is filled
with carbon black, typical of most structural
uses of rubber (tires, elastomeric bearings, etc.).
The Mooney–Rivlin plots of unfilled rubbers ex-
hibit different behavior from that observed
here.21 With unfilled rubbers, the response
starts at a low value, goes toward a maximum
in the vicinity of 1/l 5 1, and then decreases
mildly before, possibly, increasing again. Here,
the response at values of 1/l increases at a
rapid rate.

The authors gratefully acknowledge partial support of
this work by the Building and Fire Research Labora-

Figure 10 Comparison of the VL-calculated planar
stress–strain response of the rubber with finite-ele-
ment calculations for different strain-energy functions
determined without using the VL function-generated
data (planar tension). Note that the polynomial expan-
sion provides a poor fit to this case.

Figure 11 Comparison of the VL-calculated stress–
strain response of the rubber with finite-element calcu-
lations for different strain-energy functions determined
using the VL function-generated data (planar tension).
Note: Compare the improvement of the polynomial ex-
pansion fit to the data.
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